If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+64=225
We move all terms to the left:
x^2+64-(225)=0
We add all the numbers together, and all the variables
x^2-161=0
a = 1; b = 0; c = -161;
Δ = b2-4ac
Δ = 02-4·1·(-161)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{161}}{2*1}=\frac{0-2\sqrt{161}}{2} =-\frac{2\sqrt{161}}{2} =-\sqrt{161} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{161}}{2*1}=\frac{0+2\sqrt{161}}{2} =\frac{2\sqrt{161}}{2} =\sqrt{161} $
| 180=(5x-16)+(2x) | | x^2x+64=225 | | x4-4x3+14x2+20x+25=0 | | w²=27 | | 5(-3q-2)=-10-15q | | (X+2)(x+3)=(x-2)(x-4)+7 | | 2(x-2)-3(x-3)=5(x-5)+4(x+8) | | 46+3(x+13)=19 | | x^{2}=900 | | 14x=12=180 | | 3/5z=3/4z=7/20 | | 8y+8=6y-18 | | 4(k-3)=8(k+1) | | -42+x=3,x= | | 2x/16x+4=0 | | 20+2x=2(10-3x)+8x | | 3(x–12)=2x-11 | | 6x8=x+12 | | 4x+6(x-8)=15x-18 | | -189=4x-3(4x+15) | | -4x-11=2(2x-3)+4 | | x-3/2+7=14 | | -2+5x-9=3(-4)-5 | | f(-3)=-3^3+3×-3^2+2×-3+8 | | 25x+2=102 | | 2(y–4)=10 | | 43x+15=20 | | x-5/3+9=15 | | x÷5=7÷15 | | 12^9b=33 | | 129b=33 | | x+5/3-2=11 |